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Abstract Mediation analysis is frequently utilized in diverse scientific fields such as
psychology, sociology and epidemiology, to develop insight into the causal mech-
anism whereby an exposure affects an outcome. It concerns the study of indirect
effects of that exposure that are mediated through a given intermediate variable or
mediator, and/or the study of the remaining direct effect. Despite its popularity, the
traditional approach to mediation analysis proceeds in a predominantly heuristic
fashion, which can largely be ascribed to the lack of precise definitions of direct and
indirect effect in the traditional mediation analysis literatures. Moreover, problems
of confounding bias have been largely ignored.
James Robins, Sander Greenland and Judea Pearl laid the foundations for a rigor-
ous approach towards mediation analysis, which is based on counterfactuals. They
gave precise definitions of direct and indirect effect and elucidated the kind of data
that must be collected in order to control for confounding bias. In addition, they
provided generic ways to decompose a total effect into a direct and indirect effect
that is not tied to a specific statistical model. In this presentation, after a brief re-
view of some of these developments, I will concentrate on the - partly unsolved
- methodological challenges that arise when confounders of the mediator-outcome
association are affected by the exposure. In particular, I will present results on the
the identification of (natural) direct and indirect effects in such settings, and on the
estimation of (controlled) direct effects, thereby focussing on matched case-control
studies and/or survival analysis.
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1 Introduction

For many decades, scientists from diverse scientific fields - most notably, psychol-
ogy, sociology and epidemiology - have been occupied with questions as to whether
an exposure affects an outcome through pathways other than those involving a given
mediator or intermediate variable. The answer to such questions is of interest be-
cause it brings insight into the mechanisms that explain the effect of exposure on
outcome [12]. Mediation analyses are used for this purpose. They attempt to sep-
arate so-called ‘indirect effects’ from ‘direct effects’. The former term is typically
used in a loose sense to designate that part of an exposure effect which arises indi-
rectly by affecting a (given) set of intermediate variables; the latter then refers to the
remaining exposure effect.

In traditional mediation analysis, the direct effect is commonly connected with
the residual association between outcome and exposure after adjusting for the medi-
ator(s); the indirect effect is then obtained through a combination of the exposure’s
effect on the mediator and the mediator’s effect on the outcome [1, 5]. For instance,
when the associations between exposure A and mediator M and outcome Y can be
modeled through linear regressions as

E(Y |A,M) = β0 +βaA+βmM

E(M|A) = α0 +αaA,

then βa is commonly interpreted as a direct effect and βmαa as an indirect effect [1].
It is well known from the causal inference literature that these interpretations are
often not justified as a result of confounding of the mediator-outcome association
[9, 3]. Even when confounders L of this association have been measured, standard
regression adjustment is not applicable when - as often - some of these confounders
are themselves affected by the exposure, in which case we say that there is interme-
diate or time-varying confounding [4, 10, 13]. Furthermore, decomposition of a total
effect into a direct and indirect effect becomes subtle when certain nonlinear asso-
ciations exist between mediator and outcome [9, 7], e.g. when a logistic regression
model for a dichotomous outcome is adopted [11].

Robins and Greenland [9] and Pearl [7] introduced model-free definitions of di-
rect and indirect effect. Unlike the foregoing development due to Baron and Kenny
[1], their formalism of so-called natural direct and indirect effects can therefore ac-
commodate nonlinear associations between mediator and outcome. Natural direct
and indirect effects are defined in terms of so-called composite or nested counter-
factuals such as Y (a,M(0)), which denotes the counterfactual outcome that would
have been observed if the exposure A were set to a and the mediator M to the value
M(0) that it would have taken at some reference exposure level 0. Because such
composite counterfactuals are unobservable when a 6= 0, strong assumptions must
be imposed for identification. The development of Robins and Greenland [9] pre-
cludes the existence of moderation, i.e. exposure effect modification by the mediator
on the additive scale; it precludes such moderation even at the unit level. The de-
velopment of Pearl [7] precludes the possibility of intermediate confounding of the
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mediator-outcome association. This places severe restrictions on the range of realis-
tic applications that can be addressed. In fact, the prior absence of methodology to
deal with intermediate confounding has been one of the difficulties with the causal
inference literature on mediation.

This presentation will primarily focus on this problem of intermediate confound-
ing in mediation analysis. First, I will consider the problem of estimating so-called
controlled direct effects in the presence of exposure-induced confounding of the as-
sociation between mediator and outcome. I will thereby focus on diverse settings
like survival analysis and the analysis of matched case-control studies. Next, I will
propose novel results on the identification of natural direct and indirect effect in the
presence of intermediate confounding.

Fig. 1 Causal diagram with exposure A, mediator M, outcome Y , intermediate confounder L, and
with U an unmeasured confounder of the L-Y relationship.

2 The problem of intermediate confounding in mediation
analysis

The causal diagram of Figure 1 displays a setting with intermediate confounding. It
visualizes prognostic factors L of the mediator (other than the exposure) that may
also be associated with the outcome, and which thereby confound the association
between mediator and outcome. This situation is representative of most empirical
studies, including randomized experiments, because the fact that the exposure is
randomly assigned does not prevent confounding of the mediator-outcome associ-
ation. In the presence of such confounding, the residual association between out-
come and exposure after adjusting for the mediator(s) (cfr. βa in the above model)
does not encode a direct exposure effect. This is technically seen because adjust-
ment for a collider M (i.e. a node in which two edges converge) along the path
A→M← L←U →Y may render exposure A and outcome Y dependent along that
path, and may thus induce a non-causal association [8, 3]. One of the major contri-
butions of the causal inference literature has been to point this out and to make clear
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that specialized estimation techniques are often needed to be able to adjust for such
confounders, as these may themselves be affected by the exposure (as illustrated in
Figure 1). Indeed, additional regression adjustment for the confounder L once again
amounts to adjustment for a collider L along the path A→ L←U → Y . It thereby
renders A and Y dependent along that path, even in the absence of a direct effect.

3 Estimation of controlled direct effects in the presence of
intermediate confounding

Let Y (a,m) denoting the counterfactual outcome that would have been observed for
given subject if the exposure were set to a and the mediator to m. Then a controlled
direct effect [9, 7] refers to a contrast between two counterfactual outcomes for
the same subject, corresponding to different exposure levels, but the same fixed
mediator level. For instance, the controlled direct effect of exposure level a versus
reference exposure level 0, controlling for M, can then be defined as the expected
contrast

E{Y (a,m)−Y (0,m)}.

Likewise, the conditional controlled direct effect, given covariates C, of exposure
level a versus reference exposure level 0, controlling for M, can then be defined as
the expected contrast

E{Y (a,m)−Y (0,m)|C}.

Robins [8] showed that, under specific identification assumptions that we shall
describe next, controlled direct effects can be identified in the presence of inter-
mediate confounding. Specifically, provided that data have been recorded on all
confounders of the exposure-outcome relationship, as well as all confounders of
the mediator-outcome relationship, the conditional controlled direct effect can be
identified using the so-called G-formula:

E{Y (a,m)−Y (0,m)|C} =
∫

E(Y |A = a,M = m,L) f (L|A = a,C)dL

−
∫

E(Y |A = 0,M = m,L) f (L|A = 0,C)dL.

It thus follows that parametric models for the outcome and intermediate confounders
can be combined to result in an expression for the controlled direct effect. However,
the G-formula does not admit a practical approach. It requires parametric models
for the intermediate confounders, which can be problematic when the confounder
is high-dimensional. Moreover, it can be computationally cumbersome as a result
of the possibly high-dimensional integration which it involves. Finally, even simple
models for the outcome and intermediate confounder may combine into intractable
expressions for the controlled direct effect, which depend on the exposure level a
and covariate C in a highly contrived way. This not only makes results impractical
for reporting, but also makes interesting hypotheses difficult to test [8].
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Various approaches have been developed to accommodate this, some of which
we will review in this presentation.

One class of approaches involves weighting each subject’s data by the reciprocal
of the likelihood of the observed mediator, given exposure and confounders, and
then regressing the outcome on exposure and mediator [8, 10]. Since the weight-
ing corrects for confounding bias, the weighted regression analysis of the outcome
can ignore confounders and therefore does not suffer the aforementioned problem
of collider-stratification that was observed in Figure 1. However, a limitation of in-
verse probability weighting approaches is that they can perform poorly when some
individuals get assigned large weights.

An alternative class of approaches avoids inverse probability weighting by using
G-estimation strategies instead. These involve transforming the outcome in a way
that removes the mediator’s effect on the outcome and thereby the indirect effect.
Next, the resulting transformed outcome is regressed on the exposure to obtain a
measure of direct effect. This idea has been considered for additive and multiplica-
tive models [8, 4, 13], for logistic regression models [14], for survival models [6],
and for unmatched [13, 14] and matched [2] retrospective studies; see Vansteelandt
[15] for a detailed review.

4 Identification results for natural direct and indirect effects in
the presence of intermediate confounding

These developments on controlled direct effect have a number of limitations. First,
the concept of controlling the mediator at level m uniformly in the population is
often rather restrictive as it is often difficult to conceptualize a single level of the
mediator that is realistic for all units in the population. Second, the difference be-
tween the total effect and a controlled direct effect cannot generally be interpreted
as an indirect effect [9]. To overcome these limitations, alternative definitions have
been proposed of so-called natural direct and indirect effect [9, 7]. These are more
natural by allowing for variation between subjects in the level at which the mediator
is controlled and, moreover, combine to the total effect regardless of the underlying
data distribution. However, natural direct effects require stronger identification con-
ditions than controlled direct effects. In particular, it remains unclear to date how
natural direct and indirect effects can be identified in the presence of intermediate
confounding, unless in the unrealistic case where the exposure and mediator do not
interact (at the unit level) in the effect that they produce on the outcome.

Vansteelandt and VanderWeele [16] overcome this limitation by basing their de-
velopment on the following definitions of natural direct and indirect effects in the
exposed:

E {Y −Y (0,M)|A}
E {Y (0,M)−Y (0,M(0))|A} ,
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respectively. The first expresses, within each exposure stratum, how much the out-
come would change on average if the exposure were set to the reference level 0, but
the mediator were held fixed at its observed level. The second evaluates how much
the outcome would change on average if the exposure’s effect acted only through
modifying the mediator. These definitions enable decomposition of the total effect
(in the exposed) into a direct and indirect effect (in the exposed), as follows

E {Y −Y (0)|A} = E {Y −Y (0,M(0))|A}
= E {Y −Y (0,M)|A}+E {Y (0,M)−Y (0,M(0))|A} .

Vansteelandt and VanderWeele [16] show that natural direct and indirect effects
on the exposed allow for effect decomposition under weaker identification condi-
tions than population natural direct and indirect effects. When no confounders of the
mediator-outcome association are affected by the exposure, identification is possi-
ble under essentially the same conditions as for controlled direct effects. Other-
wise, identification is still possible with additional knowledge on a non-identifiable
selection-bias function which measures the dependence of the mediator effect on
the observed exposure within confounder levels, and which evaluates to zero in a
large class of realistic data-generating mechanisms.

Vansteelandt and VanderWeele [16] furthermore argue that natural direct and in-
direct effects on the exposed are of intrinsic interest in various applications. They
moreover show that these natural direct and indirect effects on the exposed coin-
cide with the corresponding population natural direct and indirect effects when the
exposure is randomly assigned. In such settings, their results are thus also of rele-
vance for assessing population natural direct and indirect effects in the presence of
exposure-induced mediator-outcome confounding, which existing methodology has
not been able to address.
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