
The diagnostics of the mean squared error of the
Eblup in small area estimation models

Pagliarella M.C. and Salvatore R.

Abstract In this paper, some issues related to the diagnostics of the mean squared er-
ror (MSE) of the Empirical Best Linear Unbiased Predictor (Eblup) in model-based
small area estimation are considered. In particular, we develop special diagnostic
tools that show the impact on the MSE of the Eblup caused by the deletion of areas
in turn in the available data. The results are valid in general for the linear mixed
model framework.
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1 The general linear mixed model

Some relevant aspects in the application of the small area estimation models can be
assessed when we try to show the impact that some data have on the model estima-
tion itself. Important features of the estimated small area models are connected with
the evaluation on the data structure, concerning: a) their impact on the estimation of
fixed and random effects, and on the covariance parameters estimates, then b), on
the estimation of predicted values by the model, namely the survey parameters esti-
mates, and c), on the estimation of the Mean Squared Error (MSE) of the Empirical
Best Linear Unbiased Predictor (Eblup). The main feature of the paper is to high-
light the impact of some subjects (areas, or cluster of areas in time-dependent data)
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Università di Cassino e del Lazio Meridionale, e-mail: mc.pagliarella@unicas.it

Renato Salvatore
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on the MSE of the Eblup estimator in area-level models. The study is conducted
as cluster (subject) deletion diagnostics analysis on every component of the MSE
of the Eblup, in the case of the restricted maximum likelihood (Reml) estimation
method. We give all the results in the following general linear model framework
[2]:

y = Xβ +Zv+ e, (1)

with y = col(yi), yi = µ̂i (i = 1, . . . ,m,∑ni = n), being µ̂i the vector (or a scalar,
if ni = 1,∀i) of the direct estimators at the subject i. Further, Z = diag(Z1, . . . ,Zm),

v1, . . . ,vm
iid∼ N(0,G), ei

ind∼ N(0,Ψi), with Ψi the covariance matrix (or a variance
scalar, if ni = 1,∀i) of the sampling errors at the subject j. The model covariance is
V = ZDZ′+R, with D = Im ⊗G, and R =⊕m

i=1Ψi. Denoting by θ̂R the vector of the
covariance parameters of Reml estimates of the model 1, we consider as first step
the MSE of the Eblup estimator µ̂H = t(θ̂R) in the ”naive approach” form [4]:

MSE(µ̂H
i ) = MSE[ti(θ̂R)] = g1i(θ̂R)+g2i(θ̂R),

ti(θ̂R) = p′iβ̂ +m′
iv̂, (2)

g1i(θ̂R) = mi(G−GZ′
iV

−1
i ZiG)m′

i,

g2i(θ̂R) = (pi −miGiZ′
iV

−1
i Xi)M(pi −miGiZ′

iV
−1
i Xi)

′ = diMd′
i , (3)

being M = (∑X ′
i V

−1
i Xi)

−1, and pi, mi some vector or matrices that define the Eblup
estimator 2. Consider now the component g1i. Even in the case of known (estimated)
θ̂R, we seemingly have an independence of the MSE estimation at subject i by the
specific jth area (subject) deletion. However, the influence of its matrix Ψj of direct
estimators sampling variances in the likelihood-based estimation can be relevant.
Denoting by g1i( j) the first component for the MSE of the Eblup at the ith area, with
the jth area deleted in the model 1, we have g1i −g1i( j) = f (θ̂R − θ̂R( j)), being θ̂R( j)
the restricted maximum likelihood (Reml) estimate of θ when the jth area is deleted.
If we denote the joint residual log-likelihood function lR = ∑i ̸= j lRi + δ lR j and the
vector of the score equations ∑i ̸= j Sθ i +δSθ j = 0, being Sθ the score equations for
θ , and δ a control variable (scalar), the infinitesimal subject (area) deletion for θ̂R
is evaluated at:

dθ̂R(δ )
dδ

|δ=1 =−F−1
θ Sθ j =−

(
∂Sθ
∂θ

)−1 ∂Sθ
∂δ

|δ=1 =−
(

∂Sθ
∂θ

)−1 ∂ lRi

∂θ
. (4)

Here Fθ is the θ -block of the Fisher information matrix, and F−1
θ is the asymptotic

covariance matrix of the estimates θ̂R. Further, we have the following relations, in
terms of the Maximum likelihood (Ml) function l and of the Reml function lR:

∂ lR j

∂θ
=

∂ l j

∂θ
+

∂∆R

∂θ
=−1

2

(
∂vecVj

∂θ

)′
vec(V−1

j −V−1
j r jr′jV

−1
j )+

∂∆R

∂θ
(5)

∂∆R

∂θ
=

1
2

(
∂vecV

∂θ

)′
vec

(
Pj,0 −P

)
,
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with r j = µ̂ −X jβ̂ , P =V−1 −V−1X(X ′V−1X)−1X ′V−1 =V−1 −V−1Q, and Q the
affine projection matrix using the distance induced by the matrix V−1. The matrix
Pj,0 is defined by the affine projection matrix Q j,0, when we consider the (n− 1)-
dimensional projection subspace spanned by the columns of the matrix X j,0. The
last has the same elements of X , with a vector of zeroes at the row j. The magnitude
of infinitesimal jth cluster (area) deletion for the vector of covariance parameters
is consequently represented by the Hessian-normalized jth Ml score equation, plus
the specific contribution due to the log-likelihood extra-term in the Reml function,
respect to the Ml function. Now noting that we get for δ = 1 by the log-likelihood
the actual Reml estimate for θ , we can approximate the cluster (area) deletion diag-
nostics by a Taylor expansion of the differentiable function θ̂R(δ ), as:

θ̂R(δ )≈ θ̂R(1)+
dθ̂R(δ )

dδ
|δ=1(δ −1) = θ̂R(1)−F−1

θ Sθ j(δ −1). (6)

The function θ̂R(δ ) at the point δ = 0 is the Taylor approximation of the dele-
tion diagnostics, θ̂R(0), for the vector of the model covariance parameters at the
jth area: θ̂R( j) ≈ θ̂R + F−1

θ Sθ j. We have, finally, the following deletion diagnos-
tics for the first component of the MSE of the Eblup: g1i( j) − g1i = g1i(θ̂R( j))−
g1i(θ̂R). Note that the relations 4–6, concerning the subject deletion diagnostics
on the model covariance parameters, are valid in the general settings of the lin-
ear mixed model framework, when we deal with the Reml estimation method. In
order to find the contribution to the MSE due to the variation of the estimator
of the model fixed effects, noting that the deletion of the jth area yields:g2i( j) =

di(∑X ′
i V

−1
i Xi − X ′

jV
−1
j X j)

−1d′
i = di(M − X ′

jV
−1
j X j)

−1d′
i , and considering that we

have (M − X ′
jV

−1
j X j)

−1 = M−1 + M−1X ′
j(Vj − X jM−1X ′

j)
−1X jM−1, we come to

g2i( j) − diMd′
i = g2i( j) − g2i = diM−1X ′

j(Vj − X jM−1X ′
j)
−1X jM−1d′

i . The deletion
of the jth area (subject) leads to the following useful relations:

a) g2i( j)−g2i = diM−1X ′
jV

−1
j (Im −H1 j)

−1X jM−1d′
i

H1 j = X jM−1X ′
jV

−1
j

b) g2i( j)−g2i = di(β̂ − β̂( j))r
′
j(r jr′j)

−1X jM−1d′
i

β̂ − β̂( j) = M−1X ′
jV

−1
j (Im −H1 j)

−1r j

c) g2i( j)−g2i = diM−1X ′
jV

−1
j H2 j

−1G jV−1
j X jM−1d′

i

H2 j = Z jG jZ′
jV

−1
j (Im −H1 j) = G jV−1

j (Im −H1 j).

The matrix H1 j is the leverage matrix of the model fixed effects for the cluster j,
(β̂ − β̂( j)) and r j are, respectively, the cluster deletion diagnostics for the model
general least squares estimate and the model residual at subject (area) j, H2 j is the
leverage matrix associate to the random area (subject) effect. Combining the above
results, we have the following MSE area (subject) deletion diagnostics:
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MSEi( j)−MSEi = (g1i( j)−g1i)+(g2i( j)−g2i) =

= g1i(θ̂R( j))−g1i(θ̂R)+(g2i( j)−g2i)

We can extend the above deletion diagnostics of the MSE of the Eblup for the term
g3i( j) − g3i [4]. This diagnostics is related to the variability of the vector of the
covariance parameters of Reml estimates θ̂R( j), when we delete the jth area. We can
easily utilize the above Taylor approximation (6), even we need an estimate of the
asymptotic covariance matrix of θ̂R( j).

2 Empirical study

We discuss an application of the MSE diagnostics in the context of a simple Fay-
Herriot area-level model. The data are the official records from the Farm Structure
Sample survey of the year 2007, collected by the Italian National Institute of Statis-
tics. The aim is to analyze the impact of some administrative Italian provinces on the
several components of the MSE of the Eblup, as highlighted in Fig.1. The dataset
contains 103 observations. The target variable is the mean of standard gross profit,
while the selected auxiliary variables are the mean of irrigable area and the number
of the total working days.
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Fig.1 MSE deletion diagnostics at the Mantova province.
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